Тема: Работа с автоматизированной системой управления (АСУ). Задачи, решаемые асу предприятием АСУ - автоматизированная система управления

Автоматизированные системы управления АСУ АСУ применяются в различных отраслях промышленности энергетике транспорте и т. в должности директора Центрального научноисследовательского института технического управления ЦНИИТУ являясь также членом коллегии Министерства приборостроения СССР он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PRакций по внедрению дорогостоящих ЭВМ вместо создания настоящих АСУ для повышения...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


АВТОМАТИЗИРОВАННЫЕ И АВТОМАТИЧЕСКИЕ СИСТЕМЫ УПРАВЛЕНИЯ

Автоматизированная система управления (АСУ) и система автомат и ческого управления (САУ) — комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках техн о логического процесса, производства, предприятия.

Автоматизированные системы управления (АСУ)

АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин автоматизированная, в отличие от термина автоматич е ская подчёркивает сохранение за человеком-оператором некоторых функций, л и бо наиболее общего, целеполагающего характера, либо не поддающихся автом а тизации. АСУ с Системой поддержки принятия решений (СППР), являются осно в ным инструментом повышения обоснованности управленческих решений.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, осн о воположник научной школы стратегического планирования Николай Иванович Ведута (1913—1998). В 1962—1967 гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрен и ем первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ - повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов план и рования процесса управления. Различают АСУ объекты (технологическими пр о цессами-АСУТП, предприятием-АСУП, отраслью-ОАСУ) и функциональные авт о матизированные системы, например, проектирование плановых расчётов, мат е риально-технического снабжения и т.д.

Цели автоматизации управления

В общем случае, систему управления можно рассматривать в виде сов о купности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использ о вания потенциальных возможностей объекта управления . Таким образом, можно выделить ряд целей:

  1. Предоставление лицу, принимающему решение (ЛПР ) релевантных да н ных для принятия решений
  2. Ускорение выполнения отдельных операций по сбору и обработке да н ных
  3. Снижение количества решений, которые должно принимать ЛПР
  4. Повышение уровня контроля и исполнительской дисциплины
  5. Повышение оперативности управления
  6. Снижение затрат ЛПР на выполнение вспомогательных процессов
  7. Повышение степени обоснованности принимаемых решений

Состав АСУ

В состав АСУ входят следующие виды обеспечений: информационное, пр о граммное, техническое, организационное, метрологическое, правовое и лингв и стическое.

Основные классификационные признаки

Основными классификационными признаками, определяющими вид АСУ, являются:

  • сфера функционирования объекта управления (промышленность, стро и тельство, транспорт, сельское хозяйство, непромышленная сфера и т.д.)
  • вид управляемого процесса (технологический, организационный, экон о мический и т.д.);
  • уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления о т раслями (для промышленности: отрасль (министерство), всесоюзное объедин е ние, всесоюзное промышленное объединение, научно-производственное объед и нение, предприятие (организация), производство, цех, участок, технологический агрегат).

Функции АСУ

Функции АСУ устанавливают в техническом задании на создание конкре т ной АСУ на основе анализа целей управления, заданных ресурсов для их дост и жения, ожидаемого эффекта от автоматизации и в соответствии со стандартами, распространяющимися на данный вид АСУ. Каждая функция АСУ реализуется с о вокупностью комплексов задач, отдельных задач и операций. Функции АСУ в о б щем случае включают в себя следующие элементы (действия):

  • планирование и (или) прогнозирование;
  • учет, контроль, анализ;
  • координацию и (или) регулирование.

Необходимый состав элементов выбирают в зависимости от вида конкре т ной АСУ. Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

Функции при формировании управляющих воздействий

  • Функции обработки информации (вычислительные функции) – осущест в ляют учет, контроль, хранение, поиск, отображение, тиражирование, преобраз о вание формы информации;
  • Функции обмена (передачи) информации – связаны с доведением выр а ботанных управляющих воздействий до ОУ и обменом информацией с ЛПР;
  • Группа функций принятия решения (преобразование содержания инфо р мации) – создание новой информации в ходе анализа, прогнозирования или оп е ративного управления объектом

Классы структур АСУ

В сфере промышленного производства с позиций управления можно выд е лить следующие основные классы структур систем управления: децентрализ о ванную, централизованную, централизованную рассредоточенную и иерархич е скую.

Децентрализованная структура

Построение системы с такой структурой эффективно при автоматизации технологически независимых объектов управления по материальным, энергетич е ским, информационным и другим ресурсам. Такая система представляет собой совокупность нескольких независимых систем со своей информационной и алг о ритмической базой.

Для выработки управляющего воздействия на каждый объект управления необходима информация о состоянии только этого объекта.

Централизованная структура

Централизованная структура осуществляет реализацию всех процессов управления объектами в едином органе управления, который осуществляет сбор и обработку информации об управляемых объектах и на основе их анализа в соо т ветствии с критериями системы вырабатывает управляющие сигналы. Появление этого класса структур связано с увеличением числа контролируемых, регулиру е мых и управляемых параметров и, как правило, с территориальной рассредот о ченностью объекта управления.

Достоинствами централизованной структуры являются достаточно простая реализация процессов информационного взаимодействия; принципиальная во з можность оптимального управления системой в целом; достаточно легкая корре к ция оперативно изменяемых входных параметров; возможность достижения ма к симальной эксплуатационной эффективности при минимальной избыточности технических средств управления.

Недостатки централизованной структуры следующие: необходимость выс о кой надежности и производительности технических средств управления для д о стижения приемлемого качества управления; высокая суммарная протяженность каналов связи при наличии территориальной рассредоточенности объектов управления.

Централизованная рассредоточенная структура

Основная особенность данной структуры — сохранение принципа центр а лизованного управления, т.е. выработка управляющих воздействий на каждый объект управления на основе информации о состояниях всей совокупности объе к тов управления. Некоторые функциональные устройства системы управления я в ляются общими для всех каналов системы и с помощью коммутаторов подключаются к индивидуальным устройствам канала, образуя замкнутый контур управления.

Алгоритм управления в этом случае состоит из совокупности взаимосвяза н ных алгоритмов управления объектами, которые реализуются совокупностью вз а имно связанных органов управления. В процессе функционирования каждый управляющий орган производит прием и обработку соответствующей информации, а также выдачу управляющих сигналов на подчиненные объекты. Для реал и зации функций управления каждый локальный орган по мере необходимости вступает в процесс информационного взаимодействия с другими органами упра в ления. Достоинства такой структуры: снижение требований, к производительности и надежности каждого центра обработки и управления без ущерба для качества управления; снижение суммарной протяженности каналов связи.

Недостатки системы в следующем: усложнение информационных проце с сов в системе управления из-за необходимости обмена данными между центрами обработки и управления, а также корректировка хранимой информации; избыто ч ность технических средств, предназначенных для обработки информации; сло ж ность синхронизации процессов обмена информацией.

Иерархическая структура

С ростом числа задач управления в сложных системах значительно увел и чивается объем переработанной информации и повышается сложность алгори т мов управления. В результате осуществлять управление централизованно нево з можно, так как имеет место несоответствие между сложностью управляемого объекта и способностью любого управляющего органа получать и перерабат ы вать информацию.

Кроме того, в таких системах можно выделить, следующие, группы задач, каждая из которых характеризуется соответствующими требованиями по времени реакции на события, происходящие в управляемом процессе:

задачи сбора данных с объекта управления и прямого цифрового управления (время реакции, секунды, доли секунды);

задачи экстремального управления, связанные с расчётами желаемых параметров управляемого процесса и требуемых значений уставок регуляторов, с логическими задачами пуска и остановки агрегатов и др. (время реакции — секунды, минуты);

задачи оптимизации и адаптивного управления процессами, технико-экономические задачи (время реакции — несколько секунд);

информационные задачи для административного управления, задачи диспетчеризации и координации в масштабах цеха, предприятия, задачи планирования и др. (время реакции — часы).

Очевидно, что иерархия задач управления приводит к необходимости создания иерархической системы средств управления. Такое разделение, позволяя справиться с информационными трудностями для каждого местного органа управления, порождает необходимость согласования принимаемых этими органами решений, т. е. создания над ними нового управляющего органа. На каждом уровне должно быть обеспечено максимальное соответствие характеристик технических средств заданному классу задач.

Кроме того, многие производственные системы имеют собственную иерархию, возникающую под влиянием объективных тенденций научно-технического прогресса, концентрации и специализации производства, способствующих повышению эффективности общественного производства. Чаще всего иерархическая структура объекта управления не совпадает с иерархией системы управления. Следовательно, по мере роста сложности систем выстраивается иерархическая пирамида управления. Управляемые процессы в сложном объекте управления требуют своевременного формирования правильных решений, которые приводили бы к поставленным целям, принимались бы своевременно, были бы взаимно согласованы. Каждое такое решение требует постановки соответствующей задачи управления. Их совокупность образует иерархию задач управления, которая в ряде случаев значительно сложнее иерархии объекта управления.

Виды АСУ

  • Автоматизированная система управления технологическим процессом или АСУ ТП — решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте.
  • Автоматизированная система управления производством (АСУ П ) — решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса. Для решения этих задач применяются MIS и MES -системы, а также LIMS -системы.

Примеры:

  • Автоматизированная система управления уличным освещением («АСУ УО») — предназначена для организации автоматизации централизованного управления уличным освещением.
    • Автоматизированная система управления наружного освещения («АСУНО») — предназначена для организации автоматизации централизованного управления наружным освещением.
    • Автоматизированная система управления дорожным движением или АСУ ДД — предназначена для управления транспортных средств и пешеходных потоков на дорожной сети города или автомагистрали
  • Автоматизированная система управления предприятием или АСУП — для решения этих задач применяются MRP , MRP II и ERP -системы. В случае, если предприятием является учебное заведение, применяются системы управления обучением .

Примеры:

  • « Система управления гостиницей ». Наряду с этим названием употребляется PMS Property Management System
    • « Автоматизированная система управления операционным риском » - это программное обеспечение, содержащее комплекс средств, необходимых для решения задач управления операционными рисками предприятий: от сбора данных до предоставления отчетности и построения прогнозов.

Системы автоматического управления (САУ)

Типы систем автоматического управления

Система автоматического управления, как правило, состоит из двух основных элементов — объекта управления и управляющего устройства.

САУ можно разделить:

  1. По цели управления

Объект управления — изменение состояния объекта в соответствии с заданным законом управления. Такое изменение происходит в результате внешних факторов, например вследствие управляющих или возмущающих воздействий.

А) Системы автоматического регулирования

  • Системы автоматической стабилизации . Выходное значение поддерживается на постоянном уровне (заданное значение — константа ). Отклонения возникают за счёт возмущений и при включении.
  • Системы программного регулирования . Заданное значение изменяется по заранее заданному программному закону f. Наряду с ошибками, встречающимися в системах автоматического регулирования, здесь также имеют место ошибки от инерционности регулятора .
  • Следящие системы . Входное воздействие неизвестно. Оно определяется только в процессе функционирования системы. Ошибки очень сильно зависят от вида функции f(t).

Б) Системы экстремального регулирования

Способны поддерживать экстремальное значение некоторого критерия (например минимальное или максимальное), характеризующего качество функционирования объекта. Критерием качества, который обычно называют целевой функцией , показателем экстремума или экстремальной характеристикой , может быть либо непосредственно измеряемая физическая величина (например, температура , ток , напряжение , влажность , давление ), либо КПД , производительность и др.

Выделяют:

  • Системы с экстремальным регулятором релейного действия. Универсальный экстремальный регулятор должен быть хорошо масштабируемым устройством, способным исполнять большое количество вычислений в соответствии с различными методами.
    • Сигнум-регулятор используется как аналоговый анализатор качества, однозначно характеризующий лишь один подстраиваемый параметр систем. Он состоит из двух последовательно включенных устройств: Сигнум-реле ( D-триггер ) и исполнительный двигатель (интегратор ).
    • Экстремальные системы с безинерционным объектом
    • Экстремальные системы с инерционным объектом
    • Экстремальные системы с плавающей характеристикой. Используется в случае, когда экстремум меняется непредсказуемым или сложно идентифицируемым образом.
  • Системы с синхронным детектором (экстремальные системы непрерывного действия). В прямом канале имеется дифференцирующее звено , не пропускающее постоянную составляющую. Удалить или зашунтировать по каким-либо причинам это звено невозможно или неприменимо. Для обеспечения работоспособности системы используется модуляция задающего воздействия и кодирование сигнала в прямом канале, а после дифференцирующего звена устанавливают синхронный детектор фазы .

В) Адаптивные системы автоматического управления

Служат для обеспечения желаемого качества процесса при широком диапазоне изменения характеристик объектов управления и возмущений.

  1. По виду информации в управляющем устройстве

А) Замкнутые САУ

В замкнутых системах автоматического регулирования управляющее воздействие формируется в непосредственной зависимости от управляемой величины. Связь входа системы с его выходом называется обратной связью . Сигнал обратной связи вычитается из задающего воздействия. Такая обратная связь называется отрицательной .

Б) Разомкнутые САУ

Сущность принципа разомкнутого управления заключается в жестко заданной программе управления. То есть управление осуществляется «вслепую», без контроля результата, основываясь лишь на заложенной в САУ модели управляемого объекта. Примеры таких систем: таймер , блок управления светофора, автоматическая система полива газона, автоматическая стиральная машина и т. п.

В свою очередь различают:

  • Разомкнутые по задающему воздействию
  • Разомкнутые по возмущающему воздействию

Характеристика САУ

В зависимости от описания переменных системы делятся на линейные и нелинейные . К линейным относятся системы, состоящие из элементов описания, которые задаются линейными алгебраическими или дифференциальными уравнениями .

Если все параметры уравнения движения системы не меняются во времени, то такая система называется стационарной . Если хотя бы один параметр уравнения движения системы меняется во времени , то система называется нестационарной или с переменными параметрами .

Системы, в которых определены внешние (задающие) воздействия и описываются непрерывными или дискретными функциями во времени относятся к классу детерминированных систем.

Системы, в которых имеет место случайные сигнальные или параметрические воздействия и описываются стохастическими дифференциальными или разностными уравнениями относятся к классу стохастических систем.

Если в системе есть хотя бы один элемент, описание которого задается уравнением частных производных , то система относится к классу систем с распределенными переменными .

Системы, в которых непрерывная динамика, порождаемая в каждый момент времени, перемежается с дискретными командами, посылаемыми извне, называются гибридными системами .

Примеры систем автоматического управления

В зависимости от природы управляемых объектов можно выделить биологический, экологический, экономические и технические системы управления. В качестве примеров технического управления можно привести:

  • Системы дискретного действия или автоматы (торговые , игровые , музыкальные ).
  • Системы стабилизации уровня звука , изображения или магнитной записи . Это могут быть управляемые комплексы летательных аппаратов , включающие в свой состав системы автоматического управления двигателя , рулевыми механизмами , автопилоты и навигационные системы .

Другие похожие работы, которые могут вас заинтересовать.вшм>

7063. Автоматизированные информационные системы (АИС) 4.89 KB
Автоматизированная информационная система (АИС) - совокупность информации, экономико-математических методов (ЭММ) и моделей, технических, программных, технологических средств и специалистов, предназначенную для обработки информации и принятия управленческих решений.
1283. Автоматизированные информационные системы 369 KB
Автоматизированные системы. Понятие автоматизированной системы. Автоматизированные информационные системы. Производственные и хозяйственные предприятия фирмы корпорации банки органы территориального управления представляют собой сложные системы. Системы значительно отличаются между собой как по составу так и по главным целям.
20397. Современные автоматизированные системы контроля и учета энергоресурсов (АСКУЭ) 991.76 KB
Целью организации учета электрической энергии является процесс получения информирования и запоминания информации для целей государственной ведомственной и корпоративной отчетности а также для удовлетворения требований менеджмента компании. Статистическая техническая отчетность имеет...
17633. Анализ системы управления земельными ресурсами на различных уровнях управления 221.29 KB
Сущность информационного обеспечения управления земельными Ресурсами. Роль мониторинга земель в управлении земельными ресурсами. Анализ системы управления земельными ресурсами на различных уровнях Управления. Анализ объекта и субъекта управления земельными ресурсами в Российской Федерации.
18928. АНАЛИЗ СИСТЕМЫ УПРАВЛЕНИЯ ФИНАНСОВЫМИ РЕСУРСАМИ (на примере «ГУ – Управления Пенсионного фонда Российской Федерации в городе Элисте Республики Калмыкия») 140.07 KB
Правовой статус Пенсионного фонда и основные показатели деятельности его структурного подразделения. Пенсионный фонд - важное звено финансовой системы государства при этом он имеет ряд особенностей: фонд создан органами власти и управления и имеет строгую целевую направленность денежные...
6752. АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ (АВТОМАТЫ) 152.7 KB
Различают несколько разновидностей автоматов: универсальные работают на постоянном и переменном токе установочные предназначаются для установки в общедоступных помещениях и выполняются по типу установочных изделий быстродействующие постоянного тока и гашения магнитного поля мощных генераторов.
5095. АВТОМАТИЧЕСКИЕ ТОРМОЗА ВАГОНОВ И БЕЗОПАСНОСТЬ ДВИЖЕНИЯ ПОЕЗДОВ 142.26 KB
Цель курсового проекта – изучение и освоение методики выполнения тормозных расчетов, обеспечивающих соблюдение безопасности движения поездов и полное использование мощности локомотивов и грузоподъемности вагонов.
12753. Исследование теоретических основ организации системы управления продажами для разработки мероприятий по совершенствованию управления продажами на исследуемом предприятии 260.65 KB
Наличие сильной и постоянно развивающейся конкуренции, вынуждают организации заменять простую систему «купил-перепродал» на все более усложняющиеся модели, вовлекающие в сферу влияния предприятия как клиентов, так и поставщиков, вплоть до создания единой интегрированной цепи поставок. При этом важнейшую роль играет организация процесса продаж, которая также постоянно усложняется.
19979. БЕЗОПАСНОСТЬ ДВИЖЕНИЯ ПОЕЗДОВ И АВТОМАТИЧЕСКИЕ ТОРМОЗА ПОДВИЖНОГО СОСТАВА 9.73 MB
Характеристика тепловоза 2М62 Сила тяги локомотива Fкр кгс Вес локомотива P т iр 40000 240 0 Таблица. № 188 Б Рычажная передача Жб 84кгс т Жм 327кгс т ач мм 200 hур 17см бч мм 300 Pу 16кгс акмм 145 dур 5см бк мм 355 Sур 196см2 в мм 400 ж 654кгс т г мм 160 Dтц Fпр 150-159 кгс Определение длины тормозного пути и времени торможения поезда при экстренном торможении способом ПТР по интервалам скорости. Основное удельное сопротивление движению 4-осных грузовых вагонов на подшипниках качения роликовых подшипниках следует...
1663. Капли. Технологическая схема изготовления в промышленных условиях. Автоматические линии 72.3 KB
В настоящее время при лечении и профилактике заболеваний глаз используются следующие глазные ЛФ промышленного производства: капли мази пленки. Самой распространенной глазной ЛФ являются капли. Требования к глазным каплям Основные требования которым должны соответствовать глазные капли: стерильность; отсутствие механических включений; комфортность изотоничность оптимальное значение рН; химическая стабильность; пролонгирование действия.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Классификация и виды АСУ

2. Автоматизированная система управления технологическим процессом

3. Автоматизированная система управления производством

4. Некоторые требования к АСУ по ГОСТу

Заключение

Список используемой литературы

Введение

В основных направлениях экономического и социального развития становится задача развивать производство электронных устройств регулирования и телемеханики, исполнительных механизмов, приборов и датчиков систем комплексной автоматизации сложных технологических процессов, агрегатов, машин и оборудования. Во всем этом могут помочь автоматизированные системы управления.

Автоматизированная система управления или АСУ -- комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин автоматизированная, в отличие от термина автоматическая подчеркивает сохранение за человеком-оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации.

Опыт, накопленный при создании автоматизированных и автоматических систем управления, показывает, что управление различными процессами основывается на ряде правил и законов, часть из которых оказывается общей для технических устройств, живых организмов и общественных явлений.

1. Классификация и виды АСУ

В зависимости от роли человека в процессе управления, форм связи и функционирования звена “человек--машина”, распределения информационных и управляющих функций между оператором и ЭВМ, между ЭВМ и средствами контроля и управления все системы можно разделить на два класса.

1. Информационные системы, обеспечивающие сбор и выдачу в удобном для обозрения виде измерительную информацию о ходе технологического или производственного процесса. В результате соответствующих расчетов определяют, какие управляющие воздействия следует произвести, чтобы управляемый процесс протекал наилучшим образом. Выработанная управляющая информация служит рекомендацией оператору, причем основная роль принадлежит человеку, а машина играет вспомогательную роль, выдавая для него необходимую информацию.

Цель таких систем -- получение оператором информации с высокой достоверностью для эффективного принятия решений. Характерной особенностью для информационных систем является работа ЭВМ в разомкнутой схеме управления. Причем возможны информационные системы различного уровня: от простых, в которых данные о состоянии производственного процесса собирают вручную, до встроенных диалоговых систем высокого уровня.

Информационные системы должны, с одной стороны, представлять отчеты о нормальном ходе производственного процесса и, с другой стороны, информацию о ситуациях, вызванных любыми отклонениями от нормального процесса.

Различают два вида информационных систем: информационно-справочные (пассивные), которые поставляют информацию оператору после его связи с системой по соответствующему запросу, информационно-советующие (активные), которые сами выдают абоненту предназначенную для него информацию периодически или через определенные промежутки времени.

2. Управляющие системы, которые обеспечивают наряду со сбором информации выдачу непосредственно, команд исполнителям или исполнительным механизмам. Управляющие системы работают обычно в реальном масштабе времени, т.е. в темпе технологических или производственных операций. В управляющих системах важнейшая роль принадлежит машине, а человек контролирует и решает наиболее сложные вопросы, которые по тем или иным причинам не могут решить вычислительные средства системы.

Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций (что и как она делает) и с точки зрения ее схемы, т. е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем -- функциональные и обеспечивающие.

Виды АСУ

Автоматизированная система управления технологическим процессом или АСУ ТП -- решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте

2. Автоматизированная система управления технологическим процессом

Автоматизированная система управления технологическим процессом или АСУ ТП -- решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте и т.д.

Под АСУ ТП обычно понимается комплексное решение, обеспечивающее автоматизацию основных технологических операций на производстве в целом или каком-то его участке, выпускающем относительно завершенный продукт. Термин автоматизированный в отличие от термина автоматический подчеркивает возможность участия человека в отдельных операциях, как в целях сохранения человеческого контроля над процессом, так и в связи со сложностью или нецелесообразностью автоматизации отдельных операций. Составными частями АСУ ТП могут быть отдельные системы автоматического управления (САУ) и автоматизированные устройства, связанные в единый комплекс. Как правило АСУ ТП имеет единую систему операторского управления технологическим процессом в виде одного или нескольких пультов управления, средства обработки и архивирования информации о ходе процесса, типовые элементы автоматики: датчики, контроллеры, исполнительные устройства. Для информационной связи всех подсистем используются промышленные сети.

К достоинствам АСУ ТП можно отнести:

· оперативный и качественный сбор информации о технологических процессах.

· наличие локальных модулей связи в системе для обеспечения непрерывной передачи информации для обработки в центральном компьютере.

· локальные микропроцессоры в каждом из звеньев цепи, позволяющие управлять оборудованием даже при временном сбое работы центрального пульта.

Коды и условные обозначения, используемые в АСУ ТП, должны быть приближены к терминам и понятиям, применяемым технологическим персоналом объекта управления, и не должны вызывать трудностей при их восприятии.

Предварительные испытания функций АСУ ТП, необходимых для проведения пуска и обкатки технологического оборудования, допускается проводить на объекте с помощью имитаторов.

Определение фактических значений показателей технико-экономической эффективности и надежности АСУ ТП производят после ее ввода в действие. Продолжительность наработки АСУ ТП, необходимую для определения фактических значений ее показателей, рассчитывают по соответствующим методикам, утвержденным в установленном порядке.

3. Автоматизированная система управления производством

Автоматизированная система управления производством (АСУ П) -- решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса.

АСУ П должна повышать эффективность производственно-хозяйственной деятельности предприятия, производственного или научно-производственного объединения (в дальнейшем - предприятия).

АСУ П должна обеспечивать автоматизированный сбор и обработку информации с широким использованием методов оптимизации по основным задачам и подсистемам управления общезаводского и цехового уровня, в том числе при необходимости в реальном масштабе времени в режиме телеобработки и диалога.

АСУ П должна быть реализована в виде совокупности совместно функционирующих подсистем, взаимодействие между которыми должно происходить через общую (единую или распределенную) базу данных.

Организационное обеспечение АСУ П должно предусматривать совершенствование методов управления и структуры системы управления предприятием при создании и развитии АСУ П.

автоматизированный система управление

4. Некоторые требования к АСУ по ГОСТу

Стандарт распространяется на автоматизированные системы управления (АСУ) всех видов (кроме общегосударственных) и устанавливает общие требования к АСУ в целом, функциям АСУ, подготовленности персонала и видам обеспечения АСУ, безопасности и эргономики, виды и порядок проведения испытаний при вводе АСУ в действие, комплектность АСУ, гарантии.

АСУ любого вида должна соответствовать требованиям настоящего стандарта, требованиям технического задания на ее создание или развитие (далее - ТЗ на АСУ), а также требованиям нормативно-технических документов, действующих в ведомстве заказчика АСУ.

Ввод в действие АСУ должен приводить к полезным технико-экономическим, социальным или другим результатам, например:

· снижению численности управленческого персонала;

· повышению качества функционирования объекта управления;

· повышению качества управления и др.

В АСУ должна быть обеспечена совместимость между ее частями, а также с автоматизированными системами (АС), взаимосвязанными с данной АСУ.

В случаях, когда АСУ или совокупность АСУ (АС) создана на базе вычислительной сети, для обеспечения совместимости между элементами такой сети должны быть применены системы протоколов многоуровневого взаимодействия.

Надежность АСУ в целом и каждой ее автоматизированной функции должна быть достаточна для достижения установленных целей функционирования системы при заданных условиях применения.

Адаптивность АСУ должна быть достаточной для достижения установленных целей ее функционирования в заданном диапазоне изменений условий применения.

В АСУ должны быть предусмотрены контроль правильности выполнения автоматизированных функций и диагностирование, с указанием места, вида и причины возникновения нарушений правильности функционирования АСУ.

В АСУ, имеющих измерительные каналы, должна быть предусмотрена возможность контроля метрологических характеристик измерительных каналов.

В АСУ должны быть предусмотрены меры защиты от неправильных действий персонала, приводящих к аварийному состоянию объекта или системы управления, от случайных изменений и разрушения информации и программ, а также от несанкционированного вмешательства.

Любая поступающая в АСУ информация вводится в систему однократно с помощью одного входного канала, если это не приводит к невыполнению требований, установленных в ТЗ на АСУ (по надежности, достоверности и т.п.).

Выходная информация одного и того же смыслового содержания должна быть сформирована в АСУ однократно, независимо от числа адресатов.

Информация, содержащаяся в базах данных АСУ, должна быть актуализирована в соответствии с периодичностью ее использования при выполнении функций системы.

АСУ должна быть защищена от утечки информации.

Наименование АСУ должно включать наименование вида АСУ и объекта управления.

АСУ в необходимых объемах должна автоматизированно выполнять:

· сбор, обработку и анализ информации (сигналов, сообщений, документов и т.п.) о состоянии объекта управления;

· выработку управляющих воздействий (программ, планов и т.п.);

· передачу управляющих воздействий (сигналов, указаний, документов) на исполнение и ее контроль;

· реализацию и контроль выполнения управляющих воздействий;

· обмен информацией (документами, сообщениями и т.п.) с взаимосвязанными автоматизированными системами.

Состав автоматизированных функций (задач, комплексов задач - далее функций) АСУ должен обеспечивать возможность управления соответствующим объектом в соответствии с любой из целей, установленных в ТЗ на АСУ.

Состав автоматизированных функций АСУ и степень их автоматизации должны быть технико-экономически и (или) социально обоснованы с учетом необходимости освобождения персонала от выполнения повторяющихся действий и создания условий для использования его творческих способностей в процессе работы.

Комплекс технических средств АСУ должен быть достаточным для выполнения всех автоматизированных функций АСУ.

В комплексе технических средств АСУ должны в основном использоваться технические средства серийного производства. При необходимости допускается применение технических средств единичного производства.

Технические средства АСУ должны быть размещены с соблюдением требований, содержащихся в технической, в том числе эксплуатационной, документации на них, и так, чтобы было удобно использовать их при функционировании АСУ и выполнять техническое обслуживание.

В АСУ должны быть использованы технические средства со сроком службы не менее десяти лет. Применение технических средств с меньшим сроком службы допускается только в обоснованных случаях и по согласованию с заказчиком АСУ.

Защита технических средств АСУ от воздействия внешних электрических и магнитных полей, а также помех по цепям питания должна быть достаточной для эффективного выполнения техническими средствами АСУ своего назначения при функционировании АСУ.

Программное обеспечение АСУ должно обладать следующими свойствами:

· функциональная достаточность (полнота);

· надежность (в том числе восстанавливаемость, наличие средств выявления ошибок);

· адаптируемость;

· модифицируемость;

· модульность построения и удобство эксплуатации.

Информационное обеспечение АСУ должно быть достаточным для выполнения всех автоматизированных функций АСУ.

Для кодирования информации, используемой только в данной АСУ, должны быть применены классификаторы, принятые у заказчика АСУ.

Для кодирования в АСУ выходной информации, используемой на вышестоящем уровне, должны быть применены классификаторы вышестоящих систем управления, кроме специально оговоренных случаев.

Информационное обеспечение АСУ должно быть совместимо с информационным обеспечением систем, взаимодействующих с ней, по содержанию, системе кодирования, методам адресования, форматам данных и форме представления информации, получаемой и выдаваемой АСУ.

Формы документов, создаваемых АСУ, должны соответствовать требованиям стандартов УСД или нормативно-технических документов ведомства заказчика АСУ.

Формы документов и видеокадров, вводимых, выводимых или корректируемых через терминалы АСУ, должны быть согласованы с соответствующими техническими характеристиками терминалов.

Совокупность информационных массивов АСУ должна быть организована в виде баз данных на машинных носителях.

Форма представления выходной информации АСУ должна быть согласована с заказчиком (пользователем) системы.

Применяемые в выходных документах АСУ термины и сокращения должны быть общепринятыми в данной предметной области и согласованы с заказчиком системы.

В АСУ должны быть предусмотрены необходимые меры по контролю и обновлению данных в информационных массивах АСУ, восстановлению массивов после отказа каких-либо технических средств АСУ, а также контролю идентичности одноименной информации в базах данных.

Организационное обеспечение АСУ должно быть достаточным для эффективного выполнения персоналом АСУ возложенных на него обязанностей при осуществлении автоматизированных и связанных с ними неавтоматизированных функций системы.

Организационная структура АСУ должна позволять выполнять все функции АСУ с учетом их распределения по уровням управления.

По каждой автоматизированной функции, которая выполняется во взаимодействии данной АСУ с другими системами, инструкции персоналу АСУ и этих систем должны быть взаимоувязаны для всех режимов выполнения данной функции и содержать указания о действиях персонала при отказах технических средств АСУ.

Лингвистическое обеспечение АСУ должно быть достаточным для общения различных категорий пользователей в удобной для них форме со средствами автоматизации АСУ и для осуществления процедур преобразования и машинного представления обрабатываемой в АСУ информации.

В лингвистическом обеспечении АСУ должны быть:

· предусмотрены языковые средства для описания любой используемой в АСУ информации;

· унифицированы используемые языковые средства;

· стандартизированы описания однотипных элементов информации и записи синтаксических конструкций;

· обеспечены удобство, однозначность и устойчивость общения пользователей со средствами автоматизации АСУ;

· предусмотрены средства исправления ошибок, возникающих при общении пользователей с техническими средствами АСУ.

Лингвистическое обеспечение АСУ должно быть отражено в документации (инструкциях, описаниях) организационного обеспечения АСУ в виде правил общения пользователей с техническими средствами АСУ во всех режимах функционирования системы.

Правовое обеспечение АСУ должно включать совокупность правовых норм:

· определяющих юридическую силу информации на носителях данных и документов, используемых при функционировании АСУ и создаваемых системой;

· регламентирующих правоотношения между лицами, входящими в состав персонала АСУ (права, обязанности и ответственность), а также между персоналом АСУ и персоналом систем, взаимодействующих с АСУ.

Разработчик АСУ гарантирует соответствие АСУ требованиям настоящего стандарта и ТЗ на АСУ при соблюдении пользователем условий и правил эксплуатации.

Соответствие применяемых в АСУ и поставляемых как продукция производственно-технического назначения технических, программных средств и комплексов средств автоматизации требованиям стандартов и ТУ на них гарантируют изготовители этих видов продукции при соблюдении пользователем условий и правил эксплуатации.

Гарантийный срок эксплуатации на АСУ исчисляют со дня ввода АСУ в действие.

Гарантийный срок эксплуатации на АСУ должен быть установлен в ТЗ на АСУ и не может быть менее 18 мес.

Заключение

Проектирование систем управления играет важную роль в современных технологических системах. Выгоды от её совершенствования систем управления в промышленности могут быть огромны. Они включают улучшение качества изделия, уменьшение потребления энергии, минимизацию максимальных затрат, повышение уровней безопасности и сокращение загрязнения окружающей среды. Трудность здесь состоит в том, что ряд наиболее передовых идей имеет сложный математический аппарат. Возможно, математическая теория систем - одно из наиболее существенных достижений науки ХХ века, но её практическая ценность определяется выгодами, которые она может приносить.

Проектирование и функционирование автоматического процесса, предназначенного для обеспечения технических характеристик, таких, например, как прибыльность, качество, безопасность и воздействие на окружающую среду, требуют тесного воздействия специалистов различных дисциплин.

Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т. д.) -- обычно длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически “вписывается” в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером (на основе получаемых им данных) оперативных управляющих команд. Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т. д.

Список используемой литературы

1. Анхимюк В.Л., Олейко О.Ф., Михеев Н.Н. «Теория автоматического управления». - М.: Дизайн ПРО, 2002.

2. Бесекерский В.А., Попов Е.П. «Теория систем автоматического управления. - 4-е изд., перераб. и доп. - СПб.: Профессия, 2003.

3. Жимерин Д. Г., Мясников В. А., Автоматизированные и автоматические системы управления, М., 2005

4. Мазур И.И., Шапиро В.Д. и др. Реструктуризация предприятий и компаний.-М.: Высшая школа, 2000.

5. Шилов К.Ю. Автоматизированная система управления муниципальными закупками СПб.: Политехника, 2001.

6. http://www.rugost.com/

7. http://asutpnews.ru/

Размещено на Allbest.ru

Подобные документы

    Место информационной системы в системе управления. Краткая история АИС управления персоналом. Классификация АИС УП. Примеры автоматизированных систем управления персоналом. Зарубежный, российский рынок автоматизированных систем управления персоналом.

    реферат , добавлен 28.11.2010

    Эволюция автоматизированных систем управления предприятием. Возможности автоматизируемых систем управления торговыми предприятиями. Back-office и Front-office. Возможности ERP-систем для автоматизации торговли, интеграция с внешним торговым оборудованием.

    курсовая работа , добавлен 01.11.2010

    Виды критериев эффективности систем управления и методы их определения. Сущность и особенности проведения факторного, корреляционного и функционально-стоимостного анализа. Социологические исследования систем управления: цели, задачи, классификация.

    курсовая работа , добавлен 23.02.2014

    Интегральная оценка качества АСУ. Определение различных стадий научно-технического уровня автоматизированных систем управления. Автоматизация задач управления по расчету аналитических показателей уровня организации производства и труда по предприятию.

    контрольная работа , добавлен 27.10.2010

    Понятие системы, ее свойства, элементы, строение и функционирование. Системы управления, их элементы, классификация, предмет, объект, достоинства и недостатки. Необходимость внедрения автоматизированных систем управления на современных предприятиях.

    контрольная работа , добавлен 13.09.2009

    Общая характеристика и основные функции CAD-систем. Характерные особенности современных автоматизированных систем управления предприятием. Принципы управления документами и организации документооборота. Свойства систем делопроизводства на предприятии.

    презентация , добавлен 27.10.2013

    Этапы развития автоматизированных систем управления (АСУ). Их назначение, область применения и классификация. Документационное управление офисами и корпорацией. Приоритеты в развитии АСУ. Особенности документационного управления офисами и корпорацией.

    курсовая работа , добавлен 18.02.2010

    Организационная структура Минского автомобильного завода. Программное обеспечение информационных технологий в системе управления предприятием, функциональные подсистемы. Классификация современных автоматизированных информационных систем управления.

    контрольная работа , добавлен 11.11.2010

    Исследование системы управления производством, выбор многоуровневой схемы его осуществления. Воздействие управляющей системы на объект управления. Механизмы правильного и открытого управления. Построение и исследование общественных систем управления.

    контрольная работа , добавлен 25.07.2012

    Системы управления складами: обзор российского рынка. Автоматизация склада как точная наука. Технологические особенности таких систем: заказные, адаптируемые и коробочные системы. Характеристика и классификация различных систем складской логистики.

Автоматизированная система управления (сокращённо АСУ) -- комплекс аппаратных и программных средств, а также персонала, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т.п.

Термин "автоматизированная", в отличие от термина "автоматическая", подчёркивает сохранение за человеком-оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации. АСУ с Системой поддержки принятия решений (СППР), являются основным инструментом повышения обоснованности управленческих решений.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913--1998). В 1962--1967 гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях.

Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ -- повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления.

Различают автоматизированные системы управления объектами (технологическими процессами -- АСУТП, предприятием -- АСУП, отраслью -- ОАСУ) и функциональные автоматизированные системы, например, проектирование плановых расчётов, материально-технического снабжения и т.д.

Цели автоматизации управления

В общем случае, систему управления можно рассматривать в виде совокупности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:

Предоставление лицу, принимающему решение (ЛПР), релевантных данных для принятия решений;

Ускорение выполнения отдельных операций по сбору и обработке данных;

Снижение количества решений, которые должно принимать ЛПР;

Повышение уровня контроля и исполнительской дисциплины;

Повышение оперативности управления;

Снижение затрат ЛПР на выполнение вспомогательных процессов;

Повышение степени обоснованности принимаемых решений.

В состав АСУ входят следующие виды обеспечений: информационное, программное, техническое, организационное, метрологическое, правовое и лингвистическое.

Функции АСУ в общем случае включают в себя следующие элементы (действия): планирование и (или) прогнозирование; учет, контроль, анализ; координацию и (или) регулирование. Необходимый состав элементов выбирают в зависимости от вида конкретной АСУ. Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

Виды АСУ

Автоматизированная система управления технологическим процессом или АСУ ТП -- решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте.

Автоматизированная система управления производством (АСУ П) -- решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса.

Для решения этих задач применяются MIS и MES-системы, а также LIMS-системы.

Автоматизированная система управления уличным освещением ("АСУ УО") -- предназначена для организации автоматизации централизованного управления уличным освещением.

Автоматизированная система управления наружного освещения ("АСУНО") -- предназначена для организации автоматизации централизованного управления наружным освещением.

Автоматизированная система управления дорожным движением ("АСУ ДД") -- предназначена для управления транспортных средств и пешеходных потоков на дорожной сети города или автомагистрали

Автоматизированная система управления предприятием ("АСУП") -- Для решения этих задач применяютсяMRP,MRP II и ERP-системы. В случае если предприятием является учебное заведение, применяются системы управления обучением.

- "Система управления гостиницей". Наряду с этим названием употребляется PMS Property Management System

"Автоматизированная система управления операционным риском" -- это программное обеспечение, содержащее комплекс средств, необходимых для решения задач управления операционными рисками предприятий: от сбора данных до предоставления отчетности и построения прогнозов.

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

Темы 10: «Управление процессами, автоматические и автоматизированные системы управления»

дисциплины «Информатика и ИКТ»

для групп первого курса СПО

технический профиль


Или АСУ – комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и тому подобное.

Автоматизированная система управления - совокупность математических методов, технических средств и организационных комплексов, обеспечивающих рациональное управление сложным объектом или процессом в соответствии с заданной целью, а так же коллектив людей объединенных общей целью (например, предприятием, технологическим процессом)..

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913-1998). В 1962-1967гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ – повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления.

Цели автоматизации управления

Обобщенной целью автоматизации управления является: повышение эффективности, использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:

1. Предоставление лицу, принимающему решение (ЛПР) адекватных данных для принятия решений.

2. Ускорение выполнения отдельных операций по сбору и обработке данных.

3. Снижение количества решений, которые должно принимать ЛПР.

4. Повышение уровня контроля и исполнительской дисциплины.

5. Повышение оперативности управления.

6. Снижение затрат ЛПР на выполнение вспомогательных процессов.

7. Повышение степени обоснованности принимаемых решений.

В состав АСУ входят следующие виды обеспечений :

Ø информационное;

Ø программное;

Ø техническое;

Ø организационное;

Ø метрологическое;

Ø правовое;

Ø лингвистическое.

Условно модель любой целесообразной деятельности можно представить как систему, состоящую из объекта (познания, управления, трансформации и т.п.) и некоторой воздействующей на него системы - системы управления (СУ). Система управления может быть полностью автоматической, (т.е. взаимодействовать с объектом без участия человека; например, банкомат), неавтоматизированной (т.е. не имеющей в составе компьтер; например, бригада рабочих, роющих траншею), автоматизированной (т.е. содержащей как людей, так и компьютеры; например, автоматизированная система налогообложения).

Функции АСУ в общем случае включают в себя следующие элементы (действия):

Ø планирование и (или) прогнозирование;

Ø учет, контроль, анализ;

Ø координацию и (или) регулирование.


Виды АСУ:

  • Автоматизированная система управления технологическим процессом или АСУ ТП – решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте.
  • Автоматизированная система управления производством (АСУ П ) – решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса.

В составе АСУ выделяют:

- основную часть , в которую входят информационное, техническое и математическое обеспечение;
- функциональную часть , к которой относятся взаимосвязанные программы, автоматизирующие конкретные функции управления.

Системы делятся на примитивные элементарные (для них строятся автоматические системы управления) и большие сложные.

Как уже выше было отмечено, АСУ предназначена для автоматизированной обработки информации и частичной подготовки управленческих решений с целью увеличения эффективности деятельности специалистов и руководителей за счет повышения уровня оперативности и обоснованности принимаемых решений.

Различают два основных типа таких систем: системы управления технологическими процессами (АСУ ТП) исистемы организационного управления (АСОУ). Их главные отличия заключаются в характере объекта управления (в первом случае – это технические объекты: машины, аппараты, устройства, во втором – объекты экономической или социальной природы, то есть, в конечном счете, коллективы людей) и, как следствие, в формах передачи информации (сигналы различной физической природы и документы соответственно).

Следует отметить, что наряду с автоматизированными системами существуют и системы автоматического управления (САУ). Такие системы после наладки могут некоторое время функционировать без участия человека.

САУ применяются только для управления техническими объектами или отдельными технологическими процессами. Системы организационного управления, как следует из их описания, не могут в принципе быть полностью автоматическими. Люди в таких системах осуществляют постановку и корректировку целей и критериев управления, структурную адаптацию системы в случае необходимости, выбор окончательного решения и придание ему юридической силы.

Как правило, АСОУ создаются для решения комплекса взаимосвязанных основных задач управления производственно-хозяйственной деятельностью организаций (предприятий) или их основных структурных подразделений. Для крупных систем АСОУ могут иметь иерархический характер, включать в свой состав в качестве отдельных подсистем АСУ ТП, АС ОДУ (автоматизированная система оперативно-диспетчерского управления), автоматизированные системы управления запасами, оперативно-календарного и объемно-календарного планирования и АСУП (автоматизированная система управления производством на уровне крупного цеха или отдельного завода в составе комбината).

Самостоятельное значение имеют автоматизированные системы диспетчерского управления, предназначенные для управления сложными человеко-машинными системами в реальном масштабе времени. К ним относятся системы диспетчерского управления в энергосистемах, на железнодорожном и воздушном транспорте, в химическом производстве и другие. В системах диспетчерского управления (и некоторых других типах АСУ) используются подсистемы автоматизированного контроля оборудования. Задачами этой подсистемы является измерение и фиксация значений параметров, характеризующих состояние контролируемого оборудования, а сравнение этих значений с заданными границами и информирование об отклонениях.

Отдельный класс АСУ составляют системы управления подвижными объектами , такими как поезда, суда, самолеты, космические аппараты и АС управления системами вооружения.

Так как большие и сложные системы обладают свойством необозримости, то их можно рассматривать с нескольких точек зрения. Следовательно, классификационных признаков тоже много.

Состав АСУ

АСУ состоит из основы и функциональной части. Основу АСУ составляют информационная база, техническая база, математическое обеспечение, организационно-экономическая база. Основа - общая часть для всех задач, решаемых АСУ.

Информационная база АСУ - размещенная на машинных носителях информации совокупность всех данных, необходимых для автоматизации управления объектом или процессом. Обычно информационная база делится на три массива: генеральный, производный и оперативный . Конструкция массивов и их полей (способы размещения на носителях, особенности взаимосвязи данных внутри массива, конкретная компоновка данных и т.д.) определяется типом АСУ и общими характеристиками объектов, для которых она предназначается. Однако целесообразно сохранять типовое конструктивное построение информационной базы для общего класса объектов (например, для машиностроительных предприятий). Генеральный массив объединяет данные, являющиеся общими для всех задач, размещение которых отвечает универсальной структуре, не ориентированной на выполнение какой-либо одной функции управления. Генеральный массив для крупного объекта содержит сотни миллионов символов, занимает большие объёмы запоминающих устройств и не всегда удобен для использования в каждой конкретной задаче, требующей для своего решения специализированной информации. Эта проблема осложняется при мультипрограммной обработке данных и недостаточно ёмких оперативных запоминающих устройствах, предполагающих хранение многих массивов в машинных архивах, функционально разобщённых с процессорами. В связи с этим в реально функционирующих АСУ возникает необходимость формирования производных массивов , отражающих специфику структуры объекта, особенности выполняемых в каждый период функций, частоту повторяемости различных задач и ряд др. факторов, связанных с текущей работой системы. Все производные массивы, как правило, формируются из генерального массива. Всякое устойчивое изменение характеристик обслуживаемого объекта должно быть отражено в генеральном массиве. Оперативный массив охватывает текущую информацию, а также промежуточные результаты вычислений. В нём же размещается первичная информация о состоянии обслуживаемого объекта, поступающая периодически по каналам связи или записанная на носителях. Обработанные и обобщённые данные могут затем вноситься в производный и генеральный массивы либо непосредственно выдаваться потребителю.

Техническая база АСУ включает средства обработки, сбора и регистрации, отображения и передачи данных, а также исполнительные механизмы, непосредственно воздействующие на объекты управления (например, автоматические регуляторы, датчики и т.д.), обеспечивающие сбор, хранение и переработку информации, а также выработку регулирующих сигналов во всех контурах автоматизированного управления производством. Основные элементы технической базы - ЭВМ, которые обеспечивают накопление, хранение и обработку данных, циркулирующих в АСУ. ЭВМ позволяют оптимизировать параметры управления, моделировать производство, подготавливать предложения для принятия решения.

К технической базе АСУ относят также средства оргтехники (копировально-множительную технику, картотеки, диктофоны и т.д.), а также вспомогательные и контрольно-измерительные средства, обеспечивающие нормальное функционирование основных технических средств, требуемых режимах.

Обычно выделяют два класса ЭВМ, используемых в АСУ: информационно-расчётные и учётно-регулирующие.

Информационно-расчётные ЭВМ находятся на высшем уровне иерархии управления (например, в координационно-вычислительном центре завода) и обеспечивают решение задач, связанных с централизованным управлением объектом по основным планово-экономическим, обеспечивающим и отчётным функциям (технико-экономическое и оперативно-производственное планирование, материально-техническое снабжение, сбыт продукции и т.д.). Они характеризуются высоким быстродействием, наличием системы прерываний, слоговой обработкой данных, переменной длиной слова, мультипрограммным режимом работы и т.д., а также широким набором и большим объёмом запоминающих устройств (оперативных, буферных, внешних, односторонних и двусторонних, с произвольным и последовательным доступом).

Учётно-регулирующие ЭВМ , как правило, относятся к нижнему уровню управления. Они размещаются обычно в цехах или на участках, и обеспечивают сбор информации от объектов управления (станков, складов и т.д.), первичную переработку этой информации, передачу данных в информационно-расчётную ЭВМ и получение от неё директивно-плановой информации, осуществление локальных расчётов (например, расписания работы каждого станка и рабочего, графика подачи комплектующих изделий и материалов, группировки деталей в партии, режимов обработки и т.д.) и выработку управляющих воздействий на объекты управления при отклонении режимов их функционирования от расчётных. Особенность учётно-регулирующих ЭВМ - хорошо развитая система автоматического сопряжения с большим числом источников информации (датчиков, регистраторов) и регулирующих устройств. Их вычислительная часть менее развита, поскольку первично обработанная информация передаётся в ЭВМ верхнего уровня для дальнейшего использования и длительного хранения.

Средства сбора и регистрации данных при участии человека включают различные регистраторы производства, с помощью которых осуществляются сбор и регистрация данных непосредственно на рабочих местах (например, в цехе, на участке, станке), а также датчики (температуры, количества изготовленных деталей, времени работы оборудования и т.д.), фиксаторы нарушений установленного технологического и организационного ритма (отсутствие заготовок, инструмента, материалов, неправильная наладка станков, отсутствие транспортных средств для отправки готовой продукции и т.д.).

Средства отображения информации предназначены для представления результатов обработки информации в удобном для практического использования виде. К ним относятся различные печатающие устройства, пишущие машины, терминалы, экраны, табло, графопостроители, индикаторы и т.п. Эти устройства, как правило, непосредственно связаны с ЭВМ или с регистраторами производства и выдают либо регулярную (регламентную), либо эпизодическую (по запросу или в случае аварийной ситуации) справочную, директивную или предупредительную информацию.

Аппаратура передачи данных осуществляет обмен информацией между различными элементами АСУ (между регистраторами производства и ЭВМ, между координационно-управляющим центром и цеховыми ЭВМ и т.д.), а также между АСУ и смежными управления уровнями (например, между АСУП и ОАСУ, между территориальными вычислительными центрами).

Математическое обеспечение АСУ - комплекс программ регулярного применения, управляющих работой технических средств и функционированием информационные базы и обеспечивающих взаимодействие человека с техническими средствами АСУ. Математическое обеспечение условно можно подразделить на систему программирования, операционную систему, общесистемный комплекс и пакеты типовых модулей.

Под организационно-экономической базой понимается совокупность экономических принципов, методов организации производства и управления, схем взаимодействия задач управления на основе правовых документов. Сюда входят организационно-экономический состав и способы формирования технико-экономических показателей управляемого объекта, а также основные принципы повышения эффективности его функционирования и место АСУ в общей системе планирования, учёта и регулирования; организация производства, труда и управления, определяющая рациональную структуру объекта (цеха, отдела и т.д.), порядок реализации технологических маршрутов, наиболее благоприятные условия работы, сохраняющие высокую работоспособность рабочих и служащих, а также научно обоснованную систему управления объектом, чёткие положения о всех подразделениях, их подчинённости, обязанностях сотрудников и их ответственности; организационно-экономическая модель, предусматривающая построение схемы взаимодействия основных задач АСУ, структуры информационного потока, а также методическое обеспечение порядка реализации задач и использования результатов их решения; организационно-правовое обеспечение (правовые основы и нормы создания и использования АСУ, правовой статус циркулирующей в АСУ информации, а также права и ответственность должностных лиц). Кроме того, организационно-экономическая база включает методические и инструктивные материалы, определяющие влияние АСУ на основные показатели функционирования объекта, оценку эффективности и пути дальнейшего развития АСУ.

Функциональная часть АСУ состоит из набора взаимосвязанных программ для реализации конкретных функций управления (планирование, финансово-бухгалтерскую деятельность и др.). Все задачи функциональной части базируются на общих для данной АСУ информационных массивах и на общих технических средствах.

Функциональную часть АСУ принято условно делить на подсистемы в соответствии с основными функциями управления объектом. Подсистемы в свою очередь делят на комплексы, содержащие наборы программ для решения конкретных задач управления в соответствии с общей концепцией системы. Состав задач функциональной части АСУ определяется типом управляемого объекта, его состоянием и видом выполняемых им заданий. Например, в АСУ предприятием часто выделяют следующие подсистемы: технической подготовки производства; управления качеством продукции; технико-экономического планирования; оперативно-производственного планирования; материально-технического обеспечения; сбыта продукции; финансово-бухгалтерской деятельности; планирования и расстановки кадров; управления транспортом; управления вспомогательными службами.


Похожая информация.


Основная цель создания автоматизированной системы управления-получение экономических преимуществ за счет улучшения качества управления организационно-технологическим процессом.

Производственно-хозяйственные цели развития

Повышение качества оказываемых услуг;

Увеличение производительности труда работников;

Увеличение объема оказываемых услуг;

Усовершенствование системы документооборота;

Повышение доходности;

Сокращение сроков формирования и обработки информации путем исключения дублирования ввода информации и оперативной ее обработки.

Повышение действенного контроля за ходом производственного процесса на основе обработки достоверной и оперативной информации и своевременного реагирования на имеющиеся отклонения;

Повышение оперативности взаимодействия различных подразделений гостиничного комплекса;

Повышение эффективности и удобства работы служащих;

Обеспечение безопасности и надежности работы системы;

Снижение непроизводительных расходов;

Улучшение показателей ремонта-обслуживания периферийного оборудования и средств телекоммуникаций при организации своевременной диагностики и прогнозирования их состояния;

Мероприятия по совершенствованию форм, методов и средств управления будут эффективными лишь в том случае, если они опираются на достоверные знания о закономерностях, определяющих структурно-функциональную организацию системы, технологических особенностях выполнения административными органами управленческих функций, условиях взаимодействия с другими организациями и учреждениями. Это положение в полной мере справедливо и по отношению к проблеме создания АСУ: чтобы целенаправленно решать задачи автоматизации процессов управления, необходимо тщательно исследовать объект автоматизации. Поэтому основополагающим этапом в общей цепи работ, связанных с проектированием и созданием АСУ, является изучение существующей системы управления.

Целями работ, выполняемых на данном этапе, являются:

Всестороннее обследование и детальное описание существующей системы управления;

Анализ результатов обследования и выявление факторов, оказывающих отрицательное влияние на качество реализации задач управления;

Этап изучения существующей системы имеет первостепенное значение для всей последующей работы по автоматизации процессов управления, так как результаты исследований, выполненных на этом этапе, позволяют объективно охарактеризовать и оценить состояние системы на момент изучения, сформулировать цели автоматизации, определить масштабы предстоящих работ, предварительно оценить затраты на модернизацию системы.

Это дает возможность уже на ранних стадиях проектирования сформировать общие принципы построения АСУ и уточнить круг задач, возлагаемых на систему. На этой основе вырабатываются рекомендации для всех этапов разработки АСУ, и определяется степень автоматизации процессов управления на отдельных этапах, а также требования к показателям эффективности функционирования АСУ, которые нужно достигнуть на каждом этапе ее создания.

Исследование существующей системы управления основывается на научном анализе назначения и основных принципов структурно-функционального построения данной организации, относящихся к формам управления, распределению задач управления между функциональными подсистемами, порядку взаимодействия органов управления между собой и т.д. Специфические особенности систем организационного управления (наличие сложной цели, многообразие составных элементов и связей между ними, временная и пространственная взаимосвязь процессов функционирования) определяют, в свою очередь, методологические особенности их анализа и изучения. Они проявляются, прежде всего, в системном подходе к решению задач анализа, в принципах формирования исследовательских коллективов и в применении специфического для системного анализа научного метода.

В основе системного подхода к анализу обследуемой организации лежит представление о взаимосвязанности и взаимозависимости происходящих в ней явлений, о более или менее сильном влиянии процессов, протекающих в любом функциональном органе системы, на характер деятельности ее частей. Это означает, что для получения достаточно полного представления об особенностях изучаемой организации и для определения наиболее рациональных путей ее совершенствования и развития необходимо установить все наиболее существенные взаимосвязи между ее функциональными частями и реализуемыми в них процессами, а также определить степень влияния их на поведение всей системы как единого целого.

Однако для того чтобы представить организацию как единое целое, недостаточно знать деление ее на части и особенности взаимодействия этих частей. В организационных системах, включающих большие коллективы людей и разнообразные технические средства, функции управления и возникающие в ходе их реализации ситуации отличаются нередко исключительной сложностью. Поэтому для исследования сущности процессов и явлений, происходящих в системах этого класса, требуется применять для их анализа разнообразные научные методики, чтобы рассмотреть различные аспекты функционирования системы (экономические, социологические, инженерные, психологические и т.д.). Отсюда вытекает требование комплексного подхода к решению задач анализа систем, привлечения в состав исследовательских коллективов и групп специалистов различного профиля. Обычно это требование реализуется при разработке программы обследования существующей системы и формирования существующего состава исполнителей работ.

Применение научных методов для анализа любых проблем обычно предполагает возможность экспериментирования. В организационных системах эти возможности весьма ограничены, а нередко и вообще отсутствуют. Поэтому при изучении систем организационного управления в качестве основного инструмента исследований широко применяются методы математического моделирования. Описывая структуру системы в количественных терминах, модели позволяют изучать различные стороны ее функционирования, проводить символическое исследование поведения системы при изменении тех или иных ее свойств, оценивать влияние разнообразных внешних факторов на характер протекания процессов, реализуемых в системе, определять наиболее реальные пути и способы улучшения системных характеристик. При этом данные об особенностях функционирования изучаемой организации обычно накапливаются на основе наблюдения деятельности органов управления, изучения организационной структуры системы, анализа документооборота, опроса должностных лиц и т.д.

Система организационного управления в отделе отличается существенным своеобразием функций, задач и форм управления, уровнем самостоятельности отдельных подсистем и объектов, характером и содержанием связей между органами различных уровней управления. Поэтому обследование существующей системы, анализ его результатов и особенно их интерпретация наряду с использованием положительного опыта, накопленного при выполнении аналогичных работ по исследованию других систем управления, предполагают также всесторонний учет специфики данной системы и особенностей, протекающих в ней процессов, так как часто “благодаря большому разнообразию внешних условий, при которых они конструируются, история создания одной системы лишь в очень малой степени может напоминать историю создания другой”.

Успешное решение задач обследования существующей системы управления во многом определяется качеством организационного обеспечения связанных с ним работ, включающего распределение работ между исполнителями, координацию деятельности исследовательских коллективов, установление деловых контактов между ними, определение ответственности конкретных исполнителей за выделенные участки работ.