Понятие о статистических методах качества. Понятие о статистических методах, особенности применения

Стандарт ИСО утверждает, что правильное применение статистических методов имеет важное значение для проведения управляющих воздействий при анализе рынка, для проектирования продукции, для прогнозирования долговечности и срока службы, для изучения средств регулирования процессов, для определения уровней качества в планах выборочного контроля, при оценке эксплуатационных характеристик для улучшения качества процессов, при оценке безопасности и анализе рисков.

Используя статистические методы, можно своевременно выявлять проблемы, связанные с качеством (обнаружить нарушение процесса до того, как произошел выпуск дефектных изделий). В значительной мере статистические методы позволяют установить и причины нарушения.

Потребность в статистических методах возникает, прежде всего, в связи с необходимостью минимизации вариабельности (изменчивости) процессов.

Под вариабельностью понимается отклонение различных фактов от заданных значений. Не выявленная своевременно вариабельность может представлять собой смертельную опасность, как для производства, так и для продукции и предприятия в целом.

Системный подход к процедуре принятия решения, основанный на теории вариабельности, называют статистическим мышлением. В соответствии с формулировкой американского общества качество статистического мышления основывается на трех фундаментальных принципах:

1) любая работа осуществляется в системе взаимосвязанных процессов;

2) во всех процессах есть вариации;

3) понимание и снижение вариации – это ключ к успеху.

Деминг говорил «Если бы мне пришлось выразить мое послание менеджмент всего в нескольких словах, я бы сказал, что вся суть состоит в уменьшении вариации».

Причины вариации любых процессов могут быть разделены на две группы.

Первая группа – это общие причины, связанные с производственной системой (оборудование, здания, сырье, персонал) соответствуют вариабельность нельзя изменить без изменения системы. Любые действия рядовых сотрудников – исполнителей в этой ситуации, скорее всего, только ухудшает положение. Вмешательство в систему почти всегда требует действий со стороны руководства – высшего менеджмента.

Вторая группа – это специальные причины, связанные с ошибками оператора, сбоями настройки, нарушения режима и др. Ликвидацией этих причин занимается персонал, непосредственно участвующий в процессе. Это неслучайные причины – износ инструмента, ослабления креплений, изменение температуры охлаждающей жидкости, нарушение технологического режима. Такие причины должны быть изучены и могут быть устранены при настройке процесса, что и обеспечивает его стабильность.

Основные функции статистических методов в УК

Познавательная информационная функция

Прогностическая функция

Оценочная функция

Аналитическая функция

Ложная и необъявленная тревога

В данном случае речь идет о статистических ошибках. Где в результате их возникновения может быть обвялено ложная тревога и на оборот не обнаружения этих ошибок может перевести к необъявленной тревоге.

В целом ошибки наблюдения – это расхождения между статистическим наблюдением и действительными значениями изучаемых величин.

при проведении статистических наблюдений выделяют два вида ошибки

1) ошибки регистрации

2) ошибки репрезентативности

Ошибки регистрации – возникают из-за неправильного установления фактов в процессе наблюдения, либо ошибочной их записи, либо и того и другого.

Ошибки регистрации бывают случайными и систематическими, преднамеренными и непреднамеренными.

Случайные ошибки – это те ошибки, которые возникают под действием случайных факторов.

Такие ошибки могут быть направлены как в сторону преувеличения, так и в сторону преуменьшения, а при достаточно большом числе наблюдения это ошибки взаимно погашаются под действием закона больших чисел.

Систематические ошибки – возникают по определенным постоянным причинам, действующим в одном и том же направлении, т.е. в сторону преувеличения или преуменьшения размера данных, что приводит к серьезным искажениям общих результатов статистического наблюдения.

Преднамеренные ошибки – это ошибки причиной которых является сознательное искажение данных.

Непреднамеренные ошибки – это ошибки, которые носят случаный, неумышленный характер, например, неисправности измерительных приборов.

Ошибки репрезентативности – такие ошибки возникают при не сплошном наблюдении. Они, так же как и ошибки регистрации бывают случайными и систематическими

Случайные ошибки репрезентативности возникают в силу того, что выборочная совокупность отобранных на основе принципа случайности единиц наблюдения отражает не всю совокупность, величина этой ошибки может быть оценена.

Систематические ошибки возникают вследствие нарушения принципа случайности отбора единиц изучаемой совокупности, которые должны быть подвергнуты наблюдению.

Размеры этих ошибок, как правило, не поддаются количественному измерению. Проверка достоверности данных статистического наблюдения может быть реализована посредством осуществления контроля.

Классификация отклонений параметров качества изделий и методов контроля

В зависимости от источника и способа получения информации методы оценки качества классифицируются на объективные, эвристические, статистические и комбинированные (смешанные). Объективные методы делят на измерительный, регистрационный, расчетный и опытной эксплуатации. Эвристические методы включают в себя органолептический, экспертный и социологические методы.

Применение статистических методов - один из наиболее эффективных путей разработки новых технологий и контроля качества процессов.

Вопрос 2. Надежность систем. Оценка вероятности отказов и вероятности безотказной работы системы при различных схемах соединения входящих в нее элементов.

Надежность систем

Надежность системы – это свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Показатель надежности количественно характеризует одно или несколько свойств, составляющих надежность объекта.

Показатель надежности может иметь размерность (например, наработка на отказ) или не иметь (например, вероятность безотказной работы).

Показатели надежности могут быть единичными и комплексными. Единичный показатель надежности характеризует одно из свойств , а комплексный - несколько свойств , составляющих надежность объекта.

Различают следующие показатели надежности:

Исправность

Работоспособность

Безотказность

Долговечность

Ремонтопригодность

Восстанавливаемость

Сохраняемость и др.

Причины изготовления ненадежной продукции:

1) отсутствие регулярной проверки соответствия стандартам;

2) ошибки в применении материалов и неправильный контроль материалов в ходе производства;

3) неправильный учет и отчетность по контролю, включая информацию об усовершенствовании технологии;

4) не отвечающие стандартам схемы выборочного контроля;

5) отсутствие испытаний материалов на их соответствие;

6) не выполнение стандартов по приемочным испытаниям;

7) отсутствие инструктивных материалов и указаний по проведению контроля;

8) не регулярное использование отчетов по контролю для усовершенствования технологического процесса.

Оценка вероятность отказов и вероятность безотказной работы любой системы зависит от схемы соединения входящих в нее элементов.

Различают три схемы соединения:

1) последовательное соединение элементов


Последовательная система соединения элементов надежна тогда, когда надежны все элементы и чем больше количество элементов в системе, тем ниже ее надежность.

Надежность последовательно соединенных элементов можно найти по формуле:

(1)

где р – это степень надежности элемента.

п – это число элементов.

Вероятность отказа системы последовательно соединенных элементов находится по формуле:

2) параллельное соединение элементов


Параллельное соединение элементов увеличивает надежность системы.

Надежность системы при параллельном соединении элементов определяется по формуле:

где q – это степень ненадежности элемента

вероятность отказа при параллельном соединении элементов определяется по формуле:

3) Комбинированные соединения.

Различают две Схемы комбинированных соединений элементов.

Схема (1) – отражает надежность системы при параллельном соединении двух подсистем, когда каждая из них состоит из двух последовательно соединенных элементов.

Схема (2) – отражает надежность системы при последовательном соединении двух подсистем, когда каждая из них состоит из двух параллельно соединенных элементов


Надежность системы при параллельном соединении двух подсистем, когда каждая из них состоит из двух последовательно соединенных элементов определяется по формуле:

Надежность системы при последовательном соединении двух подсистем, когда каждая из них состоит из двух параллельно соединенных элементов определяется по формуле.

Статистические методы (методы, основанные на использовании математической статистики), являются эффективным инструментом сбора и анализа информации о качестве. Применение этих методов, не требует больших затрат и позволяет с заданной степенью точности и достоверностью судить о состоянии исследуемых явлений (объектов, процессов) в системе качества, прогнозировать и регулировать проблемы на всех этапах жизненного цикла продукции и на основе этого вырабатывать оптимальные управленческие решения. Потребность в статистических методах возникает, прежде всего, в связи с необходимостью минимизации изменчивости процессов. Изменчивость присуща практически всем областям деятельности, связанной с обеспечением качества. Однако наиболее характерна она для процессов, поскольку они содержат много источников изменчивости.

Один из главных этапов психологического исследования – количественный и содержательный анализ полученных результатов. Содержательный анализ результатов исследования – наиболее значимый, сложный и творческий этап. Использование статистики в психологии – это необходимый компонент в процессе обработки и анализа данных. Он предлагает лишь количественные аргументы, которые требуют содержательного обоснования и интерпретации.

Условно все методы можно классифицировать по признаку общности на три основные группы: графические методы, методы анализа статистических совокупностей и экономико-математические методы.

Графические методы основаны на применении графических средств анализа статистических данных. В эту группу могут быть включены такие методы, как контрольный листок, диаграмма Парето, схема Исикавы, гистограмма, диаграмма разброса, расслоение, контрольная карта, график временного ряда и др. Данные методы не требуют сложных вычислений, могут использоваться как самостоятельно, так и в комплексе с другими методами. Овладение ими не представляет особого труда не только для инженерно-технических работников, но и для рабочих. Вместе с тем это весьма эффективные методы. Недаром они находят самое широкое применение в промышленности, особенно в работе групп качества.

Методы, анализа статистических совокупностей служат для исследования информации, когда изменение анализируемого параметра носит случайный характер. Основными методами, включаемыми в данную группу являются: регрессивный, дисперсионный и факторный виды анализа, метод сравнения средних, метод сравнения дисперсий и др. Эти методы позволяют: установить зависимость изучаемых явлений от случайных факторов как качественную (дисперсионный анализ), так и количественную (корреляционный анализ); исследовать связи между случайными и неслучайными величинами (регрессивный анализ); выявить роль отдельных факторов в изменении анализируемого параметра (факторный анализ) и т. д.

Экономико-математические методы представляют собой сочетание экономических, математических и кибернетических методов. Центральным понятием методов этой группы является оптимизация, т. е. процесс нахождения наилучшего варианта из множества возможных с учетом принятого критерия (критерия оптимальности). Строго говоря, экономико-математические методы не являются чисто статистическими, но они широко используют аппарат математической статистики, что дает основание включить их в рассматриваемую классификацию статистических методов. Для целей, связанных с обеспечением качества, из достаточно обширной группы экономико-математических методов следует выделить в первую очередь следующие: математическое программирование (линейное, нелинейное, динамическое); планирование эксперимента; имитационное моделирование: теория игр; теория массового обслуживания; теория расписаний; функционально-стоимостной анализ и др. В данную группу могут быть включены и методы Тагути, и метод развертывания функции качества (Quality Function Deployment-QFD).

Признаки и переменные

Признаки и переменные - это измеряемые психологические явле­ния. Такими явлениями могут быть: время решения задачи, количество допущенных ошибок, уровень тревожности, показатель интеллектуаль­ной лабильности, интенсивность агрессивных реакций, угол поворота корпуса в беседе, показатель социометрического статуса и множество других переменных.

Понятия признака и переменной могут использоваться как взаи­мозаменяемые. Они являются наиболее общими. Иногда вместо них используются понятия показателя или уровня, например, уровень на­стойчивости, показатель вербального интеллекта и др. Понятия показа­теля и уровня указывают на то, что признак может быть измерен коли­чественно, так как к ним применимы определения "высокий" или "низкий", например, высокий уровень интеллекта, низкие показатели тревожности и др.

Психологические переменные являются случайными величинами, поскольку заранее неизвестно, какое именно значение они примут.

Значения признака определяются при помощи специальных шкал измерения.

Шкалы измерения Измерение - это приписывание числовых форм объектам или собы­тиям в соответствии с определенными правилами. классификация типов шкал измерения:

Номинативная шкала(шкала наименований) –Объекты группируются по различным классам так, чтобы внутри класса они были идентичны по измеряемому св-ву.

Порядковая шкала(ранговая) – приписывание объектам чисел в зависимости от степени выраженности измеряемого признака.

Интервальная шкала(метрическая)- Это измерение, при котором числа отражают не только различия между объектами на уровне выраженности св-ва, но и насколько больше или меньше выражено св-во.

Переменные - это то, что можно измерять, контролировать или что можно изменять в исследованиях. Переменные отличаются многими аспектами, особенно той ролью, которую они играют в исследованиях, шкалой измерения и т.д.

Независимыми переменными называются переменные, которые варьируются исследователем, тогда как зависимые переменные - это переменные, которые измеряются или регистрируются.

Дискретная - это такая переменная, которая может принимать значения только из некоторого списка определенных чисел. Непрерывной будем считать любую переменную, не являющуюся дискретной.

Качественные - данные, которые регистрируют определенное качество, которым обладает объект.

Предмет статистической науки

Роль и значение статистики как науки

Статистика - это отрасль человеческой деятельности, направленная на сбор, обработку и анализ данных народно-хозяйственного учета. Сама статистика является одним из видов учета (бухгалтерский и оперативно-технический).

Статистика появилась как наука впервые в Китае в 5 веке до нашей эры, когда возникла необходимость в подсчете государственных земель, казны, численности населения и т.д. Связано с рождением государства. Свое дальнейшее развитие статистика получила при становлении капитализма: заводы, фабрики, с/х, внешняя торговля и т.д. Глубокие изменения претерпела статистика и в годы социализма и в настоящее время. Основы для разработки приемов, методов ст. явились предпосылки развития государственного и частного секторов.

В науку термин введен немец. ученым Готфридом Ахенвалем, к-рый в 1746 г. начал читать в Марбукском, а затем в Геттенгенском университетах новую дисциплину, названную им « статистика».

· Массовые соц-эк. явления

· Показатели коммерческой деятельности

Предметом статистики является изучение общественных явлений, динамики и направления их развития. При помощи статистических показателей данная наука определяет количественную сторону общественного явления, наблюдает закономерности перехода количества в качество на примере данного общественного явления и на основании этих наблюдений производит анализ данных, полученных в определенных условиях места и времени. Статистика исследует социально-экономические явления и процессы, которые носят массовый характер, изучает множество определяющих их факторов.

СТАТИСТИЧЕСКИЕ МЕТОДЫ - научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение

Статистические методы включают в себя и экспериментальное, и теоретическое начала. Статистика исходит прежде всего из опыта;

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Совокупность разнообразных методов образуют статистическую методологию.

Метод стадии экономико-статич.исследования

статистическая сводка и обработка

Ерлан Аскаров, доцент КазНТУ им. К. Сатпаева


Статистические методы играют важную роль в объективной оценке количественных и качественных характеристик процесса и являются одним из важнейших элементов системы обеспечения качества продукции и всего процесса управления качеством. Неслучайно основоположник современной теории менеджмента качества Э. Деминг много лет работал в Бюро по переписи населения и занимался именно вопросами статистической обработки данных. Он придавал огромное значение статистическим методам.

Для получения качественной продукции необходимо знать реальную точность имеющегося оборудования, определять соответствие точности выбранного технологического процесса заданной точности изделия, оценивать стабильность технологического процесса. Решение задач указанного типа производится в основном путем математической обработки эмпирических данных, полученных многократными измерениями либо действительных размеров изделий, либо погрешностей обработки или погрешностей измерения.

Существуют две категории погрешностей: систематические и cлучайные. В результате непосредственных наблюдений, измерений или регистрации фактов получается множество данных, которые образуют статистическую совокупность и нуждаются в обработке, включающей систематизацию и классификацию, расчет параметров, характеризующих эту совокупность, составление таблиц, графиков, иллюстрирующих процесс.

На практике используют ограниченное количество числовых характеристик, называемых параметрами распределения.

Центр группирования . Одной из основных характеристик статистической совокупности, дающей представление о том, вокруг какого центра группируются все значения, является среднее арифметическое. Оно определяется из выражения:

где Xmax, Xmin - максимальное и минимальное значения статистической совокупности.

Вариационный размах не всегда характерен, так как учитывает только крайние значения, которые могут сильно отличаться от всех других значений. Более точно рассеяние определяется с помощью показателей, учитывающих отклонение всех значений от среднего арифметического. Основным из этих показателей является среднее квадратичное отклонение результата наблюдений, которое определяется по формуле

Форма распределения вероятности. Для характеристики формы распределения обычно используют ту математическую модель, которая наилучшим образом приближает к виду кривой распределения вероятностей, полученной при анализе экспериментально полученных данных.

Закон нормального распределения. Большинство случайных явлений, происходящих в жизни, в частности, в производстве и научных исследованиях, характеризуются наличием большого числа случайных факторов, описывается законом нормального распределения, который является основным во многих практических исследованиях. Однако нормальное распределение не является единственно возможным. В зависимости от физической природы случайных величин, некоторые из них на практике могут иметь распределение другого вида, например, логарифмическое, экспоненциальное, Вейбулла, Симпсона, Релея, равной вероятности и др.

Уравнение, описывающие плотность вероятности нормального распределения имеет вид:


(5)

Нормальное распределение характеризуется двумя параметрами μ и σ 2 и на графике представляет собой симметричную кривую Гаусса (рисунок 1), имеющую максимум в точке соответствующей значению Х = μ (соответствует среднему арифметическому Х ср и называется центром группирования), а при Х → -∞ и Х → ∞ асимптотически приближающуюся к оси абсцисс. Точка перегиба кривой находится на расстоянии σ от центра расположения μ. С уменьшением σ кривая растягивается вдоль оси ординат и сжимается вдоль оси абсцисс. Между абсциссами μ - σ и μ + σ расположено 68,3 % всей площади кривой нормального распределения. Это означает, что при нормальном распределении 68,3 % всех измеренных единиц отклоняются от среднего значения не более чем на σ, то есть все они находятся в пределах + σ. Площадь, заключенная между ординатами, проведенными на расстоянии 2σ с обеих сторон от центра составляет 95,4 % и соответственно столько же единиц совокупности находится в пределах μ+ 2σ. И наконец, 99,73 % всех единиц находится в пределах μ+ 3σ. Это так называемое правило «трех сигм», характерное для нормального распределения. Согласно этому правилу за пределами отклонения на 3σ находится не более 0,27 % всех значений величин, то есть 27 реализаций на 10 тысяч. В технических приложениях принято при оценке результатов измерений работать с коэффициентами z при σ, соответствующим 90 %, 95 %, 99 %, 99,9 % вероятности попадания результата в область допуска.


Рисунок 1

Z90 = 1,65; Z95 = 1,96; Z99 = 2,576; Z999 = 3,291.

Следует отметить, что это же правило распространяется на отклонения среднего значения Х ср (?). Оно также колеблется в некоторой области на три значения среднего квадратического отклонения среднего значения S в обе стороны, и в этой области заключено 99,73 % всех значений среднего значения. Нормальное распределение хорошо проявляется при большом количестве членов статистической совокупности, не менее 30.

Распределение Стьюдента. Для практики большой интерес представляет возможность судить о распределении случайных величин и определять производственные погрешности во всех изготовленных изделиях и погрешности научных экспериментов по результатам измерения параметров статистической совокупности полученным из партии малого объема. Эта методика была разработана Карлом Госсетом в 1908 году и опубликована под псевдонимом Стьюдент.

Распределение Стьюдента симметрично, но более сплющено, чем кривая нормального распределения, и поэтому вытянуто на концах (рисунок 2). Для каждого значения n имеется своя t-функция и свое распределение. Коэффициент z заменен в распределении Стьюдента коэффициентом t, значение которого зависит от заданного уровня значимости, который определяет какая часть реализации может находиться за пределами выбранной области кривой распределения Стьюдента и количества изделий в выборке.


Рисунок 2

При больших n распределение Стьюдента асимптотически сближается со стандартным нормальным распределением. С приемлемой для практики точностью можно считать, что при n ?30, распределение Стьюдента, которое иногда называют t -распределением, апроксимируется нормальным.

t -распределение имеет те же самые параметры, что и нормальное. Это среднее арифметическое Хср, среднее квадратическое отклонение ? и среднее квадратическое отклонение среднего S. Хср определяется по формуле (1), S определяется по формуле (4), а ? по формуле:


(6)

Контроль точности. Когда известно распределение случайной величины, можно получить все особенности данной партии изделий, определить среднее значение, дисперсию и т.п. Но полная совокупность статистических данных партии промышленных изделий, а значит закон распределения вероятностей смогут быть известными, только после изготовления всей партии изделий. На практике закон распределения всей совокупности изделий почти всегда неизвестен, единственным источником информации служит выборка, обычно малая. Каждая рассчитанная по выборочным данным числовая характеристика, например, среднее арифметическое или дисперсия есть реализация случайной величины, которая от выборки к выборке может принимать различные значения. Задача контроля облегчается благодаря тому, что обычно не требуется знать точного значения отличий случайных значений от заданной величины. Достаточно лишь знать отличаются ли наблюдаемые значения больше чем на величину допускаемой ошибки, которая определяется величиной допуска. Распространение на генеральную совокупность оценок, сделанных по выборочным данным, может быть осуществлено только с некоторой вероятностью Р(t). Таким образом, суждение о свойствах генеральной совокупности всегда носит вероятностный характер и содержит элемент риска. Так как заключение делается по выборочным данным, то есть при ограниченном объеме информации, могут возникать ошибки первого и второго рода.

Вероятность допустить ошибку первого рода называют уровнем значимости и обозначают а . Область, отвечающая вероятности а , называется критической, а дополняющая ее область, вероятность попадания в которую равна 1-а , называется допустимой.

Вероятность ошибки второго рода обозначается ? , а величина 1-? называется мощностью критерия.

Величина а иногда называется риском изготовителя, а величина ? называется риском потребителя.

С вероятностью 1-а неизвестное значение Х 0 полной совокупности лежит в интервале

(Хср - Z?) < Х 0 < (Хср + Z?) для нормального распределения,

(Хср - t?) < Х 0 < (Хср + t?) для распределения Стьюдента.

Предельные крайние значения Х 0 называют доверительными границами.

При уменьшении объема выборки при распределении Стьюдента доверительные границы расширяются, а вероятность ошибки возрастает. Задаваясь, например, 5% уровнем значимости (а=0,05), считают, что с вероятностью 95% (Р=0,95) неизвестное значение Х 0 находится в интервале

(Хср - t?,:., Хср+t?)

Иными словами искомая точность будет равна Хср+ t?, причем количество деталей с размером, выходящим за пределы этого допуска, будет составлять не более 5 %.

Контроль стабильности процесса. В реальных условиях производства фактические значения параметров технологического процесса и характеристик изготовляемой продукции не только хаотично изменяются за счет случайных погрешностей, но часто с течением времени постепенно и монотонно отклоняются от заданных значений, то есть имеет место появление систематических погрешностей. Эти погрешности должны ликвидироваться путем выявления и устранения вызывающих их причин. Проблема заключается в том, что в реальных условиях систематические погрешности трудно отличить от случайных. Незначительные систематические погрешности без специального статистического анализа могут долго оставаться незамеченными на фоне случайных погрешностей.

Анализ основан на том, что когда систематические ошибки отсутствуют, фактические значения параметров изменяются случайным образом. Однако их средние значения и основные ошибки остаются неизменными во времени. В таком случае технологический процесс называют стабильным. Условно считается, что в данной партии все изделия являются одинаковыми. При стабильном процессе случайные погрешности подчиняются нормальному закону распределения с центром μ=Хо. Среднее значения параметров, полученные в различных партиях, должны быть приближенно равны Хо. Следовательно, все они приближенно равны между собой, но величина текущего среднего значения Хсрт колеблется в доверительном интервале+ tS, то есть:

(Хср - tS) ≤ Хсрт ≤ (Хср + tS) (7)

Материалом для анализа стабильности могут служить те же данные, которые использовались для контроля точности. Но они будут пригодны лишь в том случае, если представляют собой непрерывные наблюдения, охватывающие достаточный промежуток времени, или если они составлены из выборок, отобраны через определенные промежутки времени. Интервалы между выборками, называемые в этом случае пробами, устанавливают в зависимости от наблюдаемой частоты разладок оборудования.

При заданном уровне значимости среднее значение Хсрт в различных текущих партиях могут различаться не более чем на величину tS от базового Хср, полученного для первого замера, то есть

/Хср - Хсрт/ ≤ tS (8)

При выполнении этого условия можно считать, что процесс стабилен и обе партии выпущены при одинаковых условиях. Если же различие средних значений в двух партиях будет превосходить величину tS, то уже нельзя считать, что это различие вызвано только случайными причинами. В процессе появился доминирующий постоянный фактор, который изменяет значения параметров изделий в партии по определенному постоянному закону. Процесс является нестабильным и изделия, выпускаемые в разное время, будут значительно отличаться друг от друга, причем эта разница будет увеличиваться со временем.

Таким образом, расхождение средних значений в различных партиях больше чем на tS, указывает на наличие систематических ошибок и на необходимость принятия мер для их обнаружения и устранения причин, которые их вызывают. Этот принцип был применен В. Шухартом при разработкеконтрольных карт.

Статистические методы анализа стабильности могут применяться также в ситуациях, противоположных рассмотренным выше. Если в конструкцию изделия или технологический процесс его изготовления вносят какие-то изменения, то требуется определить, в какой мере это приведет к ожидаемым результатам.

Следовательно, требуется провести испытания, сделать несколько проб и статистически обработать данные. Если

/Хср.ст.-Хср.нов./ > tS, (9)

Семь простейших методов статистического исследования процесса

Современные статистические методы довольно сложны для восприятия и широкого практического использования без углубленной математической подготовки всех участников процесса. К 1979 году Союз японских ученых и инженеров (JUSE) собрал воедино семь достаточно простых в использовании наглядных методов анализа процессов. При всей своей простоте они сохраняют связь со статистикой и дают профессионалам возможность пользоваться их результатами, а при необходимости - совершенствовать их.

Причинно-следственная диаграмма Исикавы. Данная диаграмма является очень мощным инструментом для анализа ситуации, получения информации и влиянии разных факторов на основной процесс. Здесь появляется возможность не только выявить факторы, влияющие на процесс, но и определить и приоритетность их влияния.


Рисунок 3

Диаграмма типа 5М рассматривает такие компоненты качества, как «люди», «оборудование», «материал, сырье», «технология», «управление», а в диаграмме типа 6М к ним добавляется компонент «среда» (рисунок 3).

Применительно к решаемой задаче квалиметрического анализа,
- для компоненты «люди» необходимо определить факторы, связанные с удобством и безопасностью выполнения операций;
- для компоненты «оборудование» - взаимоотношения элементов конструкции анализируемого изделия между собой, связанные с выполнением данной операции;
- для компоненты «технология» - факторы, связанные с производительностью и точностью выполняемой операции;
- для компоненты «материал» - факторы, связанные с отсутствием изменений свойств материалов изделия в процессе выполнения данной операции;
- для компоненты «технология» - факторы, связанные с достоверным распознаванием ошибки процесса выполнения операции;
- для компоненты «среда» - факторы, связанные с воздействием среды на изделие и изделия на среду.

Типы дефектов Данные контроля Итого
Вмятины ///// ///// //// 14
Трещины ///// ///// ///// // 17
Выход за допуск в минус ///// // 7
Выход за допуск в плюс ///// ///// ///// ///// /// 23
Прожиг при термообработке ///// //// 9
Перекос базовых поверхностей /// 3
Литейные раковины ///// / 6
Несоответствие шероховатости ///// ///// ///// /// 18
Дефекты покраски //// 4
Прочие ///// // 7
Итого 108

Рисунок 4

Контрольные листки. Контрольные листки могут применяться как при контроле по качественным, так и при контроле по количественным признакам, в этом документе фиксируются определенные виды дефектов за определенный отрезок времени. Контрольный листок является хорошим статистическим материалом для дальнейшего анализа и изучения проблем производства и уменьшения уровня дефектности (рисунок 4).

Анализ Парето. Анализ Парето получил свое название по имени итальянского экономиста Вилфредо Парето (1848-1923), который показал, что большая часть капитала (80%) находится в руках незначительного количества людей (20%). Парето разработал логарифмические математические модели, описывающие это неоднородное распределение, а математик М.О. Лоренц представил графические иллюстрации, в частности кумулятивную кривую.

Правило Парето - «универсальный» принцип, который применим во множестве ситуаций, и без сомнения - в решении проблем качества. Д. Джуран отметил «универсальное» применение принципа Парето к любой группе причин, вызывающих то или иное последствие, причем большая часть последствий вызвана малым количеством причин. Анализ Парето ранжирует отдельные области по значимости или важности и призывает выявить и в первую очередь устранить те причины, которые вызывают наибольшее количество проблем (несоответствий).

Рисунок 5

Анализ Парето, как правило, иллюстрируется диаграммой Парето (рисунок 5), на которой по оси абсцисс отложены причины возникновения проблем качества в порядке убывания вызванных ими проблем, а по оси ординат - в количественном выражении сами проблемы, причем как в численном, так и в накопленном (кумулятивном) процентном выражении. Построим диаграмму по данным, взятым из предыдущего примера - контрольного листка.

На диаграмме отчетливо видна область принятия первоочередных мер, очерчивающая те причины, которые вызывают наибольшее количество ошибок. Таким образом, в первую очередь, предупредительные мероприятия должны быть направлены на решение именно этих проблем. Выявление и устранение причин, вызывающих появление наибольшего количества дефектов, позволяет нам расходуя минимальное количество ресурсов (деньги, время, люди, материальное обеспечение) получить максимальный эффект в виде значительного уменьшения количества дефектов.

Стратификация. В основном, стратификация - процесс сортировки данных согласно некоторым критериям или переменным, результаты которого часто показываются в виде диаграмм и графиков. Мы можем классифицировать массив данных в различные группы (или категории) с общими характеристиками, называемыми переменной стратификации. Важно установить, которые переменные будут использоваться для сортировки. Стратификация - основа для других инструментов, таких как анализ Парето или диаграммы рассеивания. Такое сочетание инструментов делает их более мощными.

Возьмем данные из контрольного листка (рисунок 4). На рисунке 6 приведен пример анализа источника возникновения дефектов. Все дефекты 108 (100%) были классифицированы на 3 категории - по сменам, по рабочим и по операциям. Из анализа представленных данных наглядно видно, что наибольший вклад в наличие дефектов вносит 2 смена (54%) и рабочий Г (47%), который работает в этой смене.

Гистограммы. Гистограммы - один из вариантов столбчатой диаграммы, отображающий зависимость частоты попадания параметров качества изделия или процесса в определенный интервал значений от этих значений.

Внизу приведен пример построения гистограммы.

Для удобства расчетов и построения применяем прикладной компьютерный программный пакет EXCEL. Необходимо определить разброс значений геометрического размера, например, диаметр вала, номинальный размер которого равен 10 мм. Произведен замер 20 валов, данные замеров приведены в первом столбце А (рисунок 7). В столбце В производим расстановку замеров по возрастанию, затем в ячейке D7 определяем размах размеров, как разницу самого большого и малого значений замера. Выбираем количество интервалов гистограммы равным 8. Определяем диапазон интервала D. Затем определяем параметры интервалов, это наименьшее и наибольшее включительно значение геометрического параметра, входящего в интервал.

где i - номер интервала.

После этого определяем количество попаданий значений параметра в каждый из 8 интервалов, после этого окончательно строим гистограмму.


Рисунок 7

Диаграммы разброса. Диаграммы разброса представляют из себя графики, которые позволяют выявить корреляцию (статистическую зависимость) между различными факторами, влияющими на показатели качества. Диаграмма строится по двум координатным осям, по оси абсцисс откладывается значение изменяемого параметра, а на оси ординат откладывается получаемое значение исследуемого параметра, которое мы имеем в момент использование изменяемого параметра, на пересечении этих значений ставим точку. Собрав достаточно большое количество таких точек, мы можем делать анализ и вывод.

Приведем пример. На предприятии решили проводить занятия по основам менеджмента качества. Каждый месяц обучение проходило определенное количество рабочих. В январе обучение прошли 2 человека, в феврале 3 человека и т.д. В течение года количество обученных работников возрастало и к концу года достигло 40 человек. Руководство дало поручение службе качества отследить зависимость процента бездефектной продукции, предъявляемой с первого раза, количества поступающих на завод рекламаций на продукцию со стороны заказчиков и расхода электроэнергии в цеху от количества обученных рабочих. Была составлена таблица 1 данных по месяцам и построены диаграммы разброса (рисунок 8, 9, 10). На них хорошо видно, что процент бездефектности повышается, имеем прямую корреляционную зависимость, количество рекламаций уменьшается, имеем обратную корреляционную зависимость, причем на диаграммах хорошо видна четко выраженная корреляционная зависимость, которая определяется по кучности точек и их приближении к какой либо точно очерченной траектории, в нашем случае это прямая линия. Количество расходуемой электроэнергии не имеет зависимости от количества обученных работников.

Контрольные карты. Контрольные карты - специальный вид диаграммы, впервые предложенный В. Шухартом в 1924 г. Они отображают характер изменения показателя качества во времени, например, стабильности получения размера изделия. По существу контрольные карты показывают стабильность технологического процесса, то есть нахождение среднего значения параметра в коридоре допускаемых значений, состоящего из верхней и нижней границы допуска. Данные этих карт могут сигнализировать о том, что параметр приближается к границе допуска и необходимо уже принимать упреждающие действия еще до того как параметр выйдет в зону брака, то есть такой метод контроля позволяет предупреждать появление брака еще на стадии его зарождения.

Существуют 7 основных типов карт.

    Отклонения среднеквадратического отклонения среднего значения х-S,

    Отклонений размахов х-R,

    Отклонений индивидуальных значений х,

    Колебания числа дефектов С,

    Колебания числа дефектов на единицу продукции u,

    Колебания числа дефектных единиц продукции pn,

    Колебания доли дефектной продукции p.

Все карты можно разбить на две группы. Первая контролирует количественные параметры качества, представляющие собой непрерывные случайные величины - размеры, масса и т.д. Вторая для контроля качественных альтернативных дискретных параметров (есть дефект - нет дефекта).

Таблица 2



Например карта х-S. Колебания среднего арифметического значения, коридор допуска здесь является величина 3S (для нормального распределения) или tS (для распределения Стьюдента), где S - среднеквадратическое отклонение среднего. Середина коридора среднее арифметическое значение первого замера. Значения этой карты наиболее достоверны и объективны. Общий вид контрольной карты показан на рисунке 11.

Литература:

1. Аскаров Е.С. Управление качеством. Учебное пособие. Изд.2. Алматы, Pro servisе, 2007, 256 с.


Достаточно подробно изложены в отечественной литературе. В практике российских предприятий, между тем, используются только некоторые из них. Рассмотрим далее некоторые методы статистической обработки.

Общие сведения

В практике отечественных предприятий распространены преимущественно статистические методы контроля . Если говорить о регулировании технологического процесса, то оно отмечается крайне редко. Применение статистических методов предусматривает, что на предприятии формируется группа из специалистов, которые имеют соответствующую квалификацию.

Значение

Согласно требованиям ИСО сер. 9000, поставщику необходимо определить необходимость в статистических методах, которые применяются в процессе разработки, регулирования и проверки возможностей производственного процесса и характеристики изделий. Используемые приемы базируются на теории вероятностей и математических расчетах. Статистические методы анализа данных могут внедряться на любом этапе жизненного цикла изделия. Они обеспечивают оценку и учет степени неоднородности продукции либо вариабельности ее свойств относительно установленных номиналов или требуемых значений, а также изменчивости процесса ее создания. Статистические методы - это приемы, посредством которых можно с заданной точностью и достоверностью судить о состоянии явлений, которые исследуются. Они позволяют спрогнозировать те или иные проблемы, выработать оптимальные решения на основе изученной фактической информации, тенденциях и закономерностях.

Направления использования

Основные области, в которых широко распространены статистические методы, - это :


Практика развитых стран

Статистические методы - это база, обеспечивающая создание продукции с высокими потребительскими характеристиками. Эти приемы широко используются в промышленно развитых государствах. Статистические методы - это, по сути, гаранты получения потребителями продукции, соответствующей установленным требованиям. Эффект их использования доказан практикой промышленных предприятий Японии. Именно они способствовали достижению высочайшего производственного уровня в этой стране. Многолетний опыт зарубежных стран показывает, насколько эффективны эти приемы. В частности, известно, что компания Hewlelt Packard, применяя статистические методы, смогла снизить в одном из случаев количество брака за месяц с 9 000 до 45 ед.

Сложности внедрения

В отечественной практике существует ряд препятствий, не позволяющих использовать статистические методы изучения показателей. Сложности возникают вследствие:


Разработка программы

Необходимо сказать, что определение потребности в тех или иных статистических методах в сфере качества, выбор, освоение конкретных приемов является довольно сложной и длительной работой для любого отечественного предприятия. Для эффективного ее осуществления целесообразно разработать специальную долговременную программу. В ней следует предусмотреть формирование службы, в задачи которой будет входить организация и методическое руководство применения статистических методов. В рамках программы нужно предусмотреть оснащение соответствующими техническими средствами, обучение специалистов, определить состав производственных задач, которые должны решаться с помощью выбранных приемов. Освоение рекомендуется начать с использования самых простых подходов. К примеру, можно использовать известные элементарные производством. Впоследствии целесообразно перейти к другим приемам. Например, это может быть анализ дисперсии, выборочная обработка информации, регулирование процессов, планирование факторного исследования и экспериментов и пр.

Классификация

К статистическим методам экономического анализа относятся разные приемы. Стоит сказать, их насчитывается довольно много. Однако ведущий специалист в сфере менеджмента качества в Японии К. Исикава рекомендует использовать семь основных методов:

  1. Диаграммы Парето.
  2. Группировка сведений по общим признакам.
  3. Контрольные карты.
  4. Причинно-следственные диаграммы.
  5. Гистограммы.
  6. Контрольные листки.
  7. Диаграммы разброса.

Руководствуясь собственным опытом в сфере менеджмента, Исикава утверждает, что 95% всех вопросов и проблем на предприятии можно решить, используя эти семь подходов.

Диаграмма Парето

Этот базируется на определенном соотношении. Оно было названо "принципом Парето". В соответствии с ним, из 20% причин появляется 80% следствий. в наглядной и понятной форме показывает относительное влияние каждого обстоятельства на общую проблему в убывающем порядке. Это воздействие можно исследовать на количестве потерь, дефектов, спровоцированных каждой причиной. Относительное влияние иллюстрируется с помощью столбиков, накопленное воздействие факторов посредством кумулятивной прямой.

Причинно-следственная диаграмма

На ней исследуемую проблему условно изображают в форме горизонтальной прямой стрелки, а условия и факторы, косвенно либо прямо влияющие на нее, - в виде наклонных. При построении следует учитывать даже незначительные на первый взгляд обстоятельства. Это обуславливается тем, что на практике достаточно часто бывают случаи, в которых решение задачи обеспечивается исключением нескольких, кажущихся несущественными, факторов. Причины, которые влияют на основные обстоятельства (первого и следующих порядков) изображают на диаграмме горизонтальными короткими стрелками. Детализированная схема будет иметь форму скелета рыбы.

Группировка сведений

Этот экономико-статистический метод используется для упорядочения множества показателей, которые были получены при оценке и измерении одного или нескольких параметров объекта. Как правило, такая информация представлена в форме неупорядоченной последовательности значений. Это могут быть линейные размеры заготовки, температура плавления, твердость материала, количество дефектов и так далее. На основе такой системы сложно делать выводы о свойствах изделия либо процессах его создания. Упорядочивание осуществляется с помощью линейных графиков. Они наглядно показывают изменения наблюдаемых параметров в течение определенного периода.

Контрольный листок

Как правило, он представлен в виде таблицы распределения частот вхождения измеряемых величин параметров объекта в соответствующие промежутки. Контрольные листки составляются в зависимости от поставленной цели исследования. Диапазон значений показателей разделяется на одинаковые интервалы. Их число выбирают обычно равное квадратному корню из количества выполненных измерений. Бланк должен быть простым, чтобы исключить проблемы при заполнении, прочтении, проверке.

Гистограмма

Она представлена в форме ступенчатого многоугольника. Он наглядно иллюстрирует распределение показателей измерений. Диапазон установленных величин разбивается на равные промежутки, которые откладывают по оси абсцисс. К каждому интервалу строится прямоугольник. Его высота равна частоте вхождения величины в данный промежуток.

Диаграммы разброса

Они используются при проверке гипотезы о взаимосвязи двух переменных величин. Модель строится следующим образом. На оси абсцисс откладывают величину одного параметра, ординат - другого показателя. В результате на графике появляется точка. Данные действия повторяются для всех значений переменных. При наличии взаимосвязи поле корреляции вытянуто, и направление не будет совпадать с направленностью оси ординат. Если зависимость отсутствует, оно параллельно одной из осей или будет иметь форму круга.

Контрольные карты

Они используются при оценке процесса в течение конкретного периода. Формирование контрольных карт базируется на следующих положениях:

  1. Все процессы отклоняются от заданных параметров с течением времени.
  2. Нестабильный ход явления не изменяются случайно. Неслучайными выступают отклонения, выходящие за границы предполагаемых пределов.
  3. Отдельные изменения могут быть спрогнозированы.
  4. Стабильный процесс может случайно отклоняться и в предполагаемых границах.

Использование в практике российских предприятий

Следует сказать, что отечественный и зарубежный опыт показывает, что наиболее эффективным статистическим методом оценки стабильности и точности оборудования и технологических процессов выступает составление контрольных карт. Этот способ используется также при регулировании производственных потенциальных мощностей. При построении карт необходимо правильно выбрать исследуемый параметр. Рекомендуется отдавать предпочтение тем показателям, которые непосредственно относятся к назначению изделия, могут быть легко измерены и на которые можно оказать воздействие посредством регулирования процесса. Если такой выбор затруднителен или не оправдан, можно выполнить оценку величин, коррелированных (взаимосвязанных) с контролируемым параметром.

Нюансы

Если измерение показателей с точностью, требуемой для составления карт по количественному критерию, экономически или технически невозможно, используют альтернативный признак. С ним связаны такие термины, как "брак" и "дефект". Под последним понимают каждое обособленное несоответствие изделия установленным требованиям. Браком называют продукцию, предоставление которой не допускается потребителям, в связи с наличием в ней дефектов.

Особенности

У каждого типа карт есть своя специфика. Ее необходимо принимать во внимание при их выборе для конкретного случая. Карты по количественному критерию считаются более чувствительными к изменениям процесса, чем те, в которых используется альтернативный признак. Однако при этом первые более трудоемки. Их используют для:

  1. Отладки процесса.
  2. Оценки возможностей внедрения технологии.
  3. Проверки точности работы оборудования.
  4. Определения допусков.
  5. Сопоставления нескольких допустимых способов создания продукта.

Дополнительно

Если разладка процесса отличается смещением контролируемого параметра, необходимо использовать Х-карты. Если имеет место увеличение рассеяния значений, выбирать нужно R или S-модели. Необходимо, однако, учитывать ряд особенностей. В частности, использование S-карт позволит точнее и быстрее установить разладку процесса, чем R-модели при одинаковых Вместе с тем, построение последних не требует выполнения сложных расчетов.

Заключение

В экономике позволяют исследовать факторы, которые обнаруживаются в ходе качественной оценки, в пространстве и динамике. С их помощью можно выполнять прогнозные расчеты. К статистическим методам экономическая анализа не относят способы оценки причинно-следственных связей хозяйственных процессов и событий, выявления перспективных и неиспользованных резервов повышения результативности деятельности. Другими словами, в число рассмотренных подходов не включаются факторные приемы.